Advanced glycation end product level, diabetes, and accelerated cognitive aging
نویسندگان
چکیده
منابع مشابه
Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis.
Advanced glycation end product (AGE) formation may contribute to the progression of atherosclerosis, particularly in diabetes. The present study explored atherosclerosis in streptozotocin-induced diabetic apolipoprotein E-deficient (apoE-/-) mice that were randomized (n = 20) to receive for 20 weeks no treatment, the AGE cross-link breaker ALT-711, or the inhibitor of AGE formation aminoguanidi...
متن کاملDietary Advanced Glycation End Products and Aging
Advanced glycation end products (AGEs) are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food) and endogenously (in humans) with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with ch...
متن کاملAdvanced glycation end products, dementia, and diabetes.
It is becoming abundantly clear that the insight into the pathological process of Alzheimer’s disease (AD) provided through autosomal dominant variants of the condition is only a partial one. The formation and aggregation of Aβ and the phosphorylation and aggregation of tau are clearly part of the core pathogenesis. However, although these may be necessary processes, and indeed in familial form...
متن کاملAdvanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes.
The formation of advanced glycation end products (AGEs) is an important biochemical abnormality that accompanies diabetes mellitus and, likely, inflammation in general. Here we summarize and discuss recent studies indicating that the effects of AGEs on vessel wall homeostasis may account for the rapidly progressive atherosclerosis associated with diabetes mellitus. Driven by hyperglycemia and o...
متن کاملAdvanced glycation end-product accumulation and associated protein modification in type II skeletal muscle with aging.
One mechanism that may influence the quality of skeletal muscle proteins, and explain the age-related decline in contractility, is protein damage. Advanced glycation end-products (AGE) in vivo are useful biomarkers of damage. In this study, comparison of extensor digitorum longus (EDL) muscles from young (8 months), old (33 months), and very old (36 months) Fischer 344 Brown Norway F1 (F344BNF1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurology
سال: 2011
ISSN: 0028-3878,1526-632X
DOI: 10.1212/wnl.0b013e3182315a56